Page tree
Contents

The getExtRif API provides access to the contents of the RDA Registry, much like the getRIFCS API.

The important difference is that getExtRif includes an additional non-RIFCS element called <extRif:extendedMetadata>. During the processing of new records in the RDA Registry, this element is populated with additional metadata about the record content and it’s context.

ARDC is able to exploit the rich mesh of metadata and services infrastructure to “enrich” or “annotate” the record content.

Example of these annotations include:

  • resolving subject strings against a controlled vocabulary service ( <extRif:subjects> )
  • analysing the spatial information provided and translating it to a geometry compatible with Google Maps ( <extRif:spatialGeometry> )
  • richly identifying the links to other objects in the registry ( <extRif:related_object> )
  • storing information about the date the record was received in the registry and what URL it was allocated in Research Data Australia ( <extRif:updateTimestamp> and <extRif:slug> )

These details are often difficult or impossible to determined from the original RIF-CS XML alone. Use this service if you require the richer content stored in the extended metadata, inferred by ANDS and its partner systems.

Please Note: The getExtRif API web service is a depreciated service.

Usage

Before you start! To use this service, institutions or individuals must register for a free API key.

Resource URL

http://researchdata.edu.au/registry/services/{YOUR API KEY}/getExtRif?{params}
    • This API is a RESTful Web Service. Simply replace the blue parameters with the appropriate values and issue a HTTP GET request.
    • Replace {YOUR API KEY} with the key your organisation registered (no API key? register for free)
    • By default, results are limited to 10 records per request. Use the start and rows parameters to step through additional results.

Service Parameters

These parameters have the same meaning as defined by SOLR Common Query Parameters (SOLR enterprise search server).

ParameterDescriptionExample Usage
qThe q parameter is normally the main query for the request.All values of q must be URL-encoded. It is also recommended that string values are surrounded by quotes.By default, the field seperator is “OR” unless “AND” is explicitly specified (see example usage #4).

1. Matching all records (i.e. unrestricted search):
q=*:*

2. Matching records based on a particular field:
q=class:(collection)

3. Matching multiple field values (OR):
q=class:(collection OR party)

4. Matching on multiple fields (AND):
q=class:(collection) AND group_search:("Monash")

5. Wildcard searching on string fields:
q=title_search:(*survey*)

sortSorting can be done on any indexed field which only has single values. Sort can be either:desc or asc.Note: Fields which are indexed as string or integers are sortable. Other field types may produce unexpected results.

1. Sort based on key in ascending order:
q=*:*&sort=key asc

2. Sort based on update time in descending order (most recent first):
q=key:*:*&sort=update_timestamp desc

start

This parameter is used to paginate results from a query.When specified, it indicates the offset in the complete result set for where the set of returned documents should begin and end.

By default, results start at 0 with 10 rows displayed. That is, by default only 10 rows are displayed in response to a search query.

1. Display the first 10 records with a key starting AODN:q=key:AODN*

2. Display the next 10 records with a key starting AODN:q=key:AODN*&start=10

rows

This parameter is used to specify how many objects to return.

By default only 10 rows are displayed in response to a search query.

1. Display 100 records starting from number 1000:

q=*:*&start=1000&rows=100

Response Format

  • By default, responses from this service are returned in XML format which can be validated against the RIF-CS Schema.
  • If no records match your query or the query was malformed, an empty <registryObjects> wrapper will be returned.

Example Usage

Retrieving extended metadata for a record

Return a particular record (including it’s extRif annotations): (look for the <extRif:extendedMetadata> element!)

getExtRif?q=key:("10378.3/8085/1018.17012") 
<registryObjects xmlns="http://ands.org.au/standards/rif-cs/registryObjects" xmlns:extRif="http://ands.org.au/standards/rif-cs/extendedRegistryObjects" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://ands.org.au/standards/rif-cs/registryObjects http://services.ands.org.au/documentation/rifcs/schema/registryObjects.xsd">
        <registryObject xmlns="http://ands.org.au/standards/rif-cs/registryObjects" xmlns:extRif="http://ands.org.au/standards/rif-cs/extendedRegistryObjects" group="Queensland University of Technology" extRif:enriched="true">
    <key>10378.3/8085/1018.17012</key>
    <originatingSource type="authoritative">http://www.qut.edu.au</originatingSource>
    <collection type="registry">
      <identifier type="local">10378.3/8085/1018.17012</identifier>
      <identifier type="doi">10.4225/09/5b177ed3d8e20</identifier>
      <name type="primary">
        <namePart type="title">Abaqus finite element model of rat femur healing under inverse dynamization (version 2)</namePart>
      </name>
      <location>
        <address>
          <physical type="postalAddress">
            <addressPart type="addressLine">Dr Cameron Wilson</addressPart>
          </physical>
        </address>
      </location>
      <location>
        <address>
          <electronic type="email">
            <value>drcjwilson@gmail.com</value>
          </electronic>
        </address>
      </location>
      <location>
        <address>
          <electronic type="url">
            <value>http://researchdatafinder.qut.edu.au/individual/n4066</value>
          </electronic>
        </address>
      </location>
      <location>
        <address>
          <electronic type="url">
            <value>https://data.researchdatafinder.qut.edu.au/dataset/abaqus-finite-element</value>
          </electronic>
        </address>
      </location>
      <location>
        <address>
          <electronic type="url">
            <value>https://data.researchdatafinder.qut.edu.au/dataset/abaqus-finite-element</value>
          </electronic>
        </address>
      </location>
      <relatedObject>
        <key>10378.3/8085/1018.13773</key>
        <relation type="hasAssociationWith"/>
      </relatedObject>
      <relatedObject>
        <key>10378.3/8085/1018.16839</key>
        <relation type="hasAssociationWith"/>
      </relatedObject>
      <relatedObject>
        <key>10378.3/8085/1018.15572</key>
        <relation type="hasAssociationWith"/>
      </relatedObject>
      <relatedObject>
        <key>10378.3/8085/1018.16841</key>
        <relation type="hasAssociationWith"/>
      </relatedObject>
      <relatedObject>
        <key>10378.3/8085/1018.15572</key>
        <relation type="hasPrincipalInvestigator"/>
      </relatedObject>
      <relatedObject>
        <key>10378.3/8085/1018.16840</key>
        <relation type="isOutputOf"/>
      </relatedObject>
      <subject type="local">mechanobiology</subject>
      <subject type="anzsrc-for">010202</subject>
      <subject type="anzsrc-for">0903</subject>
      <subject type="local">biomechanics</subject>
      <subject type="local">finite element analysis</subject>
      <subject type="local">fracture healing</subject>
      <subject type="local">bone healing</subject>
      <subject type="anzsrc-for">0699</subject>
      <subject type="anzsrc-for">0103</subject>
      <subject type="anzsrc-for">110314</subject>
      <subject type="local">simulation</subject>
      <description type="full">&amp;lt;p&amp;gt;This finite element model of bone fracture healing was based, as closely as possible, on that published by Wehner et al (Wehner T, Steiner M, Ignatius A, Claes L (2014) Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study. PLoS One 9:e115695 doi:10.1371/journal.pone.0115695).&amp;lt;/p&amp;gt;

&amp;lt;p&amp;gt;It comprises Abaqus input files (.inp) and FORTRAN code (.f), the latter being the user subroutines used to control changes in the model as the tissues heal.&amp;lt;/p&amp;gt;

&amp;lt;p&amp;gt;This model comprises part of the basis for a paper comparing the predictions of an earlier computational model (Wilson CJ, Sch&amp;uuml;tz MA, Epari DR (2017) Computational simulation of bone fracture healing under inverse dynamisation. Biomech Model Mechanobiol 16:5-14 doi:10.1007/s10237-016-0798-x) to the results of an experimental study (Bartnikowski N et al. (2017) Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthop 88:217-222 doi:10.1080/17453674.2016.1256940). The conditions applied correspond to the in vivo experiment.&amp;lt;/p&amp;gt;

&amp;lt;p&amp;gt;Each input file corresponds to a test group - flexible fracture fixation, stiff fixation, and fixation modulated from flexible to stiff at certain time-points, according to the inverse dynamization hypothesis (Epari DR, Wehner T, Ignatius A, Schuetz MA, Claes LE (2013) A case for optimising fracture healing through inverse dynamization. Med Hypotheses 81:225-227 doi:10.1016/j.mehy.2013.04.044)&amp;lt;/p&amp;gt;

&amp;lt;p&amp;gt;This version of the collection contains additional code to derive morphometric characterisations and measurements of flexural rigidity (bending stiffness), to allow direct comparison to the experimental study. This includes a Python script to export the required results from the Abaqus output database, and Matlab code to carry out analyses. For flexural rigidity, Abaqus input files are included, which derive their geometry and material properties from the end-states of the iterative models, and are subjected to 4-point bending tests. Fortran code for the required user subroutines is also included.&amp;lt;/p&amp;gt;
</description>
      <coverage>
        <temporal>
          <date type="dateFrom" dateFormat="W3CDTF">2016-11-18T00:00:00Z</date>
          <date type="dateTo" dateFormat="W3CDTF">2018-05-31T00:00:00Z</date>
        <extRif:friendly_date>From 2016-11-18 to 2018-05-31</extRif:friendly_date></temporal>
      </coverage>
      <rights>
        <rightsStatement>© Queensland University of Technology (QUT), 2018</rightsStatement>
        <licence type="CC-BY-NC-SA" rightsUri="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-Share Alike 3.0</licence>
        <accessRights>This code is made freely available for research purposes. Appropriate citation of the relevant publication and/or this collection is required for any published work using or derived from these models.</accessRights>
      </rights>
      <citationInfo>
        <citationMetadata>
          <identifier type="doi">10.4225/09/5b177ed3d8e20</identifier>
          <contributor seq="1">
            <namePart type="family">Wilson</namePart>
            <namePart type="given">Cameron</namePart>
          </contributor>
          <title> Abaqus finite element model of rat femur inverse dynamization: Version 2</title>
          <version>2</version>
          <publisher>Queensland University of Technology</publisher>
          <date type="publicationDate">2018</date>
          <url>http://researchdatafinder.qut.edu.au/individual/n4066</url>
        </citationMetadata>
      </citationInfo>
    </collection>
  <extRif:extendedMetadata><extRif:slug>abaqus-finite-element-version-2</extRif:slug><extRif:dataSourceKey>qut.edu.au</extRif:dataSourceKey><extRif:status>PUBLISHED</extRif:status><extRif:id>1330464</extRif:id><extRif:dataSourceTitle>Queensland University of Technology</extRif:dataSourceTitle><extRif:dataSourceID>106</extRif:dataSourceID><extRif:updateTimestamp>1529044294</extRif:updateTimestamp><extRif:displayTitle>Abaqus finite element model of rat femur healing under inverse dynamization (version 2)</extRif:displayTitle><extRif:listTitle>Abaqus finite element model of rat femur healing under inverse dynamization (version 2)</extRif:listTitle><extRif:simplifiedTitle>Abaqus finite element model of rat femur healing under inverse dynamization (version 2)</extRif:simplifiedTitle><extRif:dci_description>This finite element model of bone fracture healing was based, as closely as possible, on that published by Wehner et al (Wehner T, Steiner M, Ignatius A, Claes L (2014) Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study. PLoS One 9:e115695 doi:10.1371/journal.pone.0115695).

It comprises Abaqus input files (.inp) and FORTRAN code (.f), the latter being the user subroutines used to control changes in the model as the tissues heal.

This model comprises part of the basis for a paper comparing the predictions of an earlier computational model (Wilson CJ, Sch&amp;uuml;tz MA, Epari DR (2017) Computational simulation of bone fracture healing under inverse dynamisation. Biomech Model Mechanobiol 16:5-14 doi:10.1007/s10237-016-0798-x) to the results of an experimental study (Bartnikowski N et al. (2017) Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthop 88:217-222 doi:10.1080/17453674.2016.1256940). The conditions applied correspond to the in vivo experiment.

Each input file corresponds to a test group - flexible fracture fixation, stiff fixation, and fixation modulated from flexible to stiff at certain time-points, according to the inverse dynamization hypothesis (Epari DR, Wehner T, Ignatius A, Schuetz MA, Claes LE (2013) A case for optimising fracture healing through inverse dynamization. Med Hypotheses 81:225-227 doi:10.1016/j.mehy.2013.04.044)

This version of the collection contains additional code to derive morphometric characterisations and measurements of flexural rigidity (bending stiffness), to allow direct comparison to the experimental study. This includes a Python script to export the required results from the Abaqus output database, and Matlab code to carry out analyses. For flexural rigidity, Abaqus input files are included, which derive their geometry and material properties from the end-states of the iterative models, and are subjected to 4-point bending tests. Fortran code for the required user subroutines is also included.
</extRif:dci_description><extRif:subjects><extRif:subject><extRif:subject_value>mechanobiology</extRif:subject_value><extRif:subject_type>local</extRif:subject_type><extRif:subject_resolved>mechanobiology</extRif:subject_resolved><extRif:subject_uri/></extRif:subject><extRif:subject><extRif:subject_value>010202</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>Biological Mathematics</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/010202</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>01</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>MATHEMATICAL SCIENCES</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/01</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>0102</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>APPLIED MATHEMATICS</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>0903</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>BIOMEDICAL ENGINEERING</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>09</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>ENGINEERING</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/09</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>biomechanics</extRif:subject_value><extRif:subject_type>local</extRif:subject_type><extRif:subject_resolved>biomechanics</extRif:subject_resolved><extRif:subject_uri/></extRif:subject><extRif:subject><extRif:subject_value>finite element analysis</extRif:subject_value><extRif:subject_type>local</extRif:subject_type><extRif:subject_resolved>finite element analysis</extRif:subject_resolved><extRif:subject_uri/></extRif:subject><extRif:subject><extRif:subject_value>fracture healing</extRif:subject_value><extRif:subject_type>local</extRif:subject_type><extRif:subject_resolved>fracture healing</extRif:subject_resolved><extRif:subject_uri/></extRif:subject><extRif:subject><extRif:subject_value>bone healing</extRif:subject_value><extRif:subject_type>local</extRif:subject_type><extRif:subject_resolved>bone healing</extRif:subject_resolved><extRif:subject_uri/></extRif:subject><extRif:subject><extRif:subject_value>0699</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>OTHER BIOLOGICAL SCIENCES</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/0699</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>06</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>BIOLOGICAL SCIENCES</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/06</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>0103</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>NUMERICAL AND COMPUTATIONAL MATHEMATICS</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>110314</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>Orthopaedics</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/110314</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>11</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>MEDICAL AND HEALTH SCIENCES</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/11</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>1103</extRif:subject_value><extRif:subject_type>anzsrc-for</extRif:subject_type><extRif:subject_resolved>CLINICAL SCIENCES</extRif:subject_resolved><extRif:subject_uri>http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103</extRif:subject_uri></extRif:subject><extRif:subject><extRif:subject_value>simulation</extRif:subject_value><extRif:subject_type>local</extRif:subject_type><extRif:subject_resolved>simulation</extRif:subject_resolved><extRif:subject_uri/></extRif:subject></extRif:subjects><extRif:right type="rightsStatement">© Queensland University of Technology (QUT), 2018</extRif:right><extRif:right type="licence" rightsUri="http://creativecommons.org/licenses/by-nc-sa/4.0/" licence_type="CC-BY-NC-SA" licence_group="Non-Commercial Licence">Creative Commons Attribution-NonCommercial-Share Alike 3.0</extRif:right><extRif:right type="accessRights">This code is made freely available for research purposes. Appropriate citation of the relevant publication and/or this collection is required for any published work using or derived from these models.</extRif:right><extRif:annotations/></extRif:extendedMetadata></registryObject></registryObjects>

 

 

 

  • No labels

This page has no comments.